Featured Research

Optomechanical metamaterials with giant nonlinearity Advanced Materials (2016) 

The first demonstration of light driven optomechanical metamaterials exhibiting giant nonlinearity in the near infrared.

Metamaterial nanostructures actuated by light give rise to a large optical nonlinearity. Plasmonic metamolecules on a flexible support structure cut from a dielectric membrane of nanoscale thickness are rearranged by optical illumination. This changes the optical properties of the strongly coupled plasmonic structure and therefore results in modulation of light with light.

Ref:
Giant nonlinearity of an optically reconfigurable plasmonic metamaterial
J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev
Adv. Mater. 28, 729-733 (2016) doi: 10.1002/adma.201504467

Visible range plasmonics in the topological insulator Nature Communications (2014) 

The development of metamaterials, data processing circuits and sensors for the visible and ultraviolet parts of the spectrum is hampered by the lack of low-loss media supporting plasmonic excitations. This has driven the intense search for plasmonic materials beyond noble metals. Here we show that the semiconductor Bi1.5Sb0.5Te1.8Se1.2, also known as a topological insulator, is also a good plasmonic material in the blue-ultraviolet range, in addition to the already-investigated terahertz frequency range. Metamaterials fabricated from Bi1.5Sb0.5Te1.8Se1.2 show plasmonic resonances from 350 to 550 nm, while surface gratings exhibit cathodoluminescent peaks from 230 to 1,050 nm. The observed plasmonic response is attributed to the combination of bulk charge carriers from interband transitions and surface charge carriers of the topological insulator. The importance of our result is in the identification of new mechanisms of negative permittivity in semiconductors where visible range plasmonics can be directly integrated with electronics.

Ref:
Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2
J. Y. Ou, J. K. So, G. Adamo, A. Sulaev, L. Wang, and N. I. Zheludev
Nat. Commun., 5, 5139 (2014) doi: 10.1038/ncomms6139

Reconfigurable Photonic Metamaterials   Nano Letters (2011) 

The first demonstration of thermal actuated reconfigurable metamaterial in the near-infrared.
We introduce mechanically reconfigurable photonic metamaterials (RPMs) as a flexible platform for realizing metamaterial devices with reversible and large-range tunable characteristics in the optical part of the spectrum. Here we illustrate this concept for a temperature-driven RPM exhibiting reversible relative transmission changes of up to 50%.

Ref:
Reconfigurable photonic metamaterials
J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev
Nano Lett. 11(5), 2142-2144 (2011) doi: 10.1021/nl200791r

Part of £5.5M Nano-metrology Programme Grant

The UK’s Engineering and Physical Sciences Research Council (EPSRC) has announced funding for a five-year research programme, from Feb. 2021, on NEXT GENERATION METROLOGY DRIVEN BY NANOPHOTONICS. This collaboration between the University of Southampton’s Zepler Institute for Photonics & Nanoelectronics and the University of Huddersfield’s Centre for Precision Technologies will harness the latest advances in nanophotonics, plasmonics and metamaterials research to develop optical metrology tools and measurement techniques that can be deployed in the real-world and novel metrology concepts for nanotechnology. 
Work at Southampton will be led by Prof Nikolay Zheludev, Prof Kevin MacDonald, Dr Eric Plum and Dr Jun-Yu(Bruce) Ou. The Programme is supported by project partners including major metrology instrumentation companies Taylor Hobson and Renishaw, as well as QinetiQ, Qioptiq, and academic partners at Nanyang Technological University, Singapore.

Press coverage: